Medizinische Erkenntnis durch Auswertung von Patientendaten aus verschiedenen Quellen – oder Schutz sensibler, persönlicher Informationen vor Weitergabe an Dritte: Das sind zwei berechtigte Anliegen, die meist nur schwer unter einen Hut zu bekommen sind. Der Weg, alle relevanten Daten in einen Topf zu werfen und auszuwerten, ist oft aus rechtlichen Gründen verbaut. Doch es gibt eine Alternative, die den Konflikt zwischen Kollaboration und Datenschutz auflösen kann. Das Federated Secure Computing genannte Verfahren setzt darauf, dass die Daten quasi ihren Heimathafen gar nicht verlassen. Wenn etwa mehrere Forschungseinrichtungen ihre jeweiligen Datenbestände analysieren, tun sie das für sich parallel auf dieselbe Methode und führen dann ihre Ergebnisse zusammen. Das ist kryptografisch abgesichert, so dass sich keine Rückschlüsse auf einzelne Originaldaten ziehen lassen. Und die Resultate sind im Endeffekt genauso gut wie bei einer gemeinsamen Datenbasis. Hendrik Ballhausen von der Ludwig-Maximilians-Universität München ist einer der Köpfe dieses innovativen Projekts, das vom Stifterverband im Rahmen der Initiative „Wirkung hoch 100“ gefördert wird. Die zugrunde liegenden mathematischen Verfahren gibt es schon seit den 1970er-Jahren. Neu ist der Open-Source-Ansatz, dieses verteilte Rechnen in schlanke, effiziente Anwendungen zu verpacken, um zum Beispiel Korrelationen in Daten zu erkennen. Dies nutzt nicht nur der medizinischen Forschung, sondern könnte etwa auch in der Wirtschaft zur Erstellung von Branchen-Benchmarks dienen – wenn Unternehmen, die miteinander im Wettbewerb stehen, ihre Daten einfließen lassen, ohne sie aus der Hand zu geben.
Offene Software-Werkzeuge zur Forschung an privaten Daten ohne Aufgabe der Privatsphäre
Hendrik Ballhausen |
Medizinische Erkenntnis durch Auswertung von Patientendaten aus verschiedenen Quellen – oder Schutz sensibler, persönlicher Informationen vor Weitergabe an Dritte: Das sind zwei berechtigte Anliegen, die meist nur schwer unter einen Hut zu bekommen sind. Der Weg, alle relevanten Daten in einen Topf zu werfen und auszuwerten, ist oft aus rechtlichen Gründen verbaut.
Doch es gibt eine Alternative, die den Konflikt zwischen Kollaboration und Datenschutz auflösen kann. Das Federated Secure Computing genannte Verfahren setzt darauf, dass die Daten quasi ihren Heimathafen gar nicht verlassen. Wenn etwa mehrere Forschungseinrichtungen ihre jeweiligen Datenbestände analysieren, tun sie das für sich parallel auf dieselbe Methode und führen dann ihre Ergebnisse zusammen. Das ist kryptografisch abgesichert, so dass sich keine Rückschlüsse auf einzelne Originaldaten ziehen lassen. Und die Resultate sind im Endeffekt genauso gut wie bei einer gemeinsamen Datenbasis.
Hendrik Ballhausen von der Ludwig-Maximilians-Universität München ist einer der Köpfe dieses innovativen Projekts, das vom Stifterverband im Rahmen der Initiative „Wirkung hoch 100“ gefördert wird. Die zugrunde liegenden mathematischen Verfahren gibt es schon seit den 1970er-Jahren. Neu ist der Open-Source-Ansatz, dieses verteilte Rechnen in schlanke, effiziente Anwendungen zu verpacken, um zum Beispiel Korrelationen in Daten zu erkennen. Dies nutzt nicht nur der medizinischen Forschung, sondern könnte etwa auch in der Wirtschaft zur Erstellung von Branchen-Benchmarks dienen – wenn Unternehmen, die miteinander im Wettbewerb stehen, ihre Daten einfließen lassen, ohne sie aus der Hand zu geben.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License