Active Motif's Podcast   /     Sex-biased Imprinting and DNA Regulatory Landscapes During Reprogramming (Sam Buckberry)

Description

In this episode of the Epigenetics Podcast, we talked with Sam Buckberry from the Telethon Kids Institute about his work on gene imprinting, sex-biased gene expression, DNA regulatory landscapes, and genomics in the indigenous population of Australia. Sam Buckberry's research career started with working on the imprinting of H19, IGF2, and IGF2R genes in the placenta. We talk about the controversy surrounding the imprinting of IGF2R and how his study used pyrosequencing to quantify gene expression. We also discuss Sam's work on sex-biased gene expression in the placenta and the identification of a cluster of genes related to placental development and pregnancy. In addition, we talk about Sam's research on reprogramming and the characterization of DNA regulatory landscapes during the process. We discuss the challenges of working with sequencing data, the discovery of epigenetic memories, and erasing them during reprogramming. Towards the end of the conversation, Sam mentions his current work in setting up an epigenetics group focused on indigenous genomics. They are conducting a large-scale, multi-omics study on cardiometabolic conditions in samples from indigenous Australian communities, with the goal of identifying biomarkers and better understanding the molecular basis of these conditions.   References Buckberry, S., Liu, X., Poppe, D. et al. Transient naive reprogramming corrects hiPS cells functionally and epigenetically. Nature 620, 863–872 (2023). https://doi.org/10.1038/s41586-023-06424-7 Knaupp AS1, Buckberry S1, Pflueger J, Lim SM, Ford E, Larcombe MR, Rossello FJ, de Mendoza A, Alaei S, Firas J, Holmes ML, Nair SS, Clark SJ, Nefzger CM, Lister R and Polo JM (2017). Transient and permanent reconfiguration of chromatin and transcription factor occupancy drive reprogramming. Cell Stem Cell 21, 1-12 1 Co-first author   Related Episodes The Effect of Mechanotransduction on Chromatin Structure and Transcription in Stem Cells (Sara Wickström) Differential Methylated Regions in Autism Spectrum Disorders (Janine La Salle) The Role of Pioneer Factors Zelda and Grainyhead at the Maternal-to-Zygotic Transition (Melissa Harrison)   Contact Epigenetics Podcast on X Epigenetics Podcast on Instagram Epigenetics Podcast on Mastodon Epigenetics Podcast on Bluesky Epigenetics Podcast on Threads Active Motif on X Active Motif on LinkedIn Email: podcast@activemotif.com

Summary

In this episode of the Epigenetics Podcast, we talked with Sam Buckberry from the Telethon Kids Institute about his work on gene imprinting, sex-biased gene expression, DNA regulatory landscapes, and genomics in the indigenous population of Australia. Sam Buckberry's research career started with working on the imprinting of H19, IGF2, and IGF2R genes in the placenta. We talk about the controversy surrounding the imprinting of IGF2R and how his study used pyrosequencing to quantify gene expression. We also discuss Sam's work on sex-biased gene expression in the placenta and the identification of a cluster of genes related to placental development and pregnancy. In addition, we talk about Sam's research on reprogramming and the characterization of DNA regulatory landscapes during the process. We discuss the challenges of working with sequencing data, the discovery of epigenetic memories, and erasing them during reprogramming. Towards the end of the conversation, Sam mentions his current work in setting up an epigenetics group focused on indigenous genomics. They are conducting a large-scale, multi-omics study on cardiometabolic conditions in samples from indigenous Australian communities, with the goal of identifying biomarkers and better understanding the molecular basis of these conditions.   References Buckberry, S., Liu, X., Poppe, D. et al. Transient naive reprogramming corrects hiPS cells functionally and epigenetically. Nature 620, 863–872 (2023). https://doi.org/10.1038/s41586-023-06424-7 Knaupp AS1, Buckberry S1, Pflueger J, Lim SM, Ford E, Larcombe MR, Rossello FJ, de Mendoza A, Alaei S, Firas J, Holmes ML, Nair SS, Clark SJ, Nefzger CM, Lister R and Polo JM (2017). Transient and permanent reconfiguration of chromatin and transcription factor occupancy drive reprogramming. Cell Stem Cell 21, 1-12 1 Co-first author   Related Episodes The Effect of Mechanotransduction on Chromatin Structure and Transcription in Stem Cells (Sara Wickström) Differential Methylated Regions in Autism Spectrum Disorders (Janine La Salle) The Role of Pioneer Factors Zelda and Grainyhead at the Maternal-to-Zygotic Transition (Melissa Harrison)   Contact Epigenetics Podcast on X Epigenetics Podcast on Instagram Epigenetics Podcast on Mastodon Epigenetics Podcast on Bluesky Epigenetics Podcast on Threads Active Motif on X Active Motif on LinkedIn Email: podcast@activemotif.com

Subtitle
In this episode of the Epigenetics Podcast, we talked with Sam Buckberry from the Telethon Kids Institute about his work on gene imprinting, sex-biased gene expression, DNA regulatory landscapes, and genomics in the indigenous population of Australia...
Duration
38:30
Publishing date
2024-01-25 00:01
Link
https://activemotif.podbean.com/e/sex-biased-imprinting-and-dna-regulatory-landscapes-during-reprogramming-sam-buckberry/
Contributors
  Active Motif
author  
Enclosures
https://mcdn.podbean.com/mf/web/xdr7vt/AMP116_-_Sam_Buckberry8xnsy.mp3
audio/mpeg

Shownotes

In this episode of the Epigenetics Podcast, we talked with Sam Buckberry from the Telethon Kids Institute about his work on gene imprinting, sex-biased gene expression, DNA regulatory landscapes, and genomics in the indigenous population of Australia.

Sam Buckberry's research career started with working on the imprinting of H19, IGF2, and IGF2R genes in the placenta. We talk about the controversy surrounding the imprinting of IGF2R and how his study used pyrosequencing to quantify gene expression. We also discuss Sam's work on sex-biased gene expression in the placenta and the identification of a cluster of genes related to placental development and pregnancy.

In addition, we talk about Sam's research on reprogramming and the characterization of DNA regulatory landscapes during the process. We discuss the challenges of working with sequencing data, the discovery of epigenetic memories, and erasing them during reprogramming. Towards the end of the conversation, Sam mentions his current work in setting up an epigenetics group focused on indigenous genomics. They are conducting a large-scale, multi-omics study on cardiometabolic conditions in samples from indigenous Australian communities, with the goal of identifying biomarkers and better understanding the molecular basis of these conditions.

 

References
  • Buckberry, S., Liu, X., Poppe, D. et al. Transient naive reprogramming corrects hiPS cells functionally and epigenetically. Nature 620, 863–872 (2023). https://doi.org/10.1038/s41586-023-06424-7

  • Knaupp AS1, Buckberry S1, Pflueger J, Lim SM, Ford E, Larcombe MR, Rossello FJ, de Mendoza A, Alaei S, Firas J, Holmes ML, Nair SS, Clark SJ, Nefzger CM, Lister R and Polo JM (2017). Transient and permanent reconfiguration of chromatin and transcription factor occupancy drive reprogramming. Cell Stem Cell 21, 1-12 1 Co-first author

 

Related Episodes

 

Contact