Active Motif's Podcast   /     The Impact of Paternal Diet on Offspring Metabolism (Upasna Sharma)

Description

In this episode of the Epigenetics Podcast, we talked with Upasna Sharma from UC Santa Cruz about her work a number of interesting projects on H2A.Z and telomeres, the impact of paternal diet on offspring metabolism, and the role of small RNAs in sperm. In this interview Upasna Sharma discusses her work on the study of the paternal diet's impact on offspring metabolism. She reveals the discovery of small non-coding RNAs, particularly tRNA fragments, in mature mammalian sperm that may carry epigenetic information to the next generation. She explains the specific alterations in tRNA fragment levels in response to a low-protein diet and the connections found between tRNA fragments and metabolic status. Dr. Sharma further explains the degradation and stabilization of tRNA fragments in cells and the processes involved in their regulation. She shares their observation of tRNA fragment abundance in epididymal sperm, despite the sperm being transcriptionally silent at that time. This leads to a discussion on the role of the epididymis in the reprogramming of small RNA profiles and the transportation of tRNA fragments through extracellular vesicles. The conversation then shifts towards the potential mechanism of how environmental information could be transmitted to sperm and the observed changes in small RNAs in response to a low-protein diet. Dr. Sharma discusses the manipulation of small RNAs in embryos and mouse embryonic stem cells, revealing their role in regulating specific sets of genes during early development. However, the exact mechanisms that link these early changes to metabolic phenotypes are still being explored. References Sharma, U., Conine, C. C., Shea, J. M., Boskovic, A., Derr, A. G., Bing, X. Y., Belleannee, C., Kucukural, A., Serra, R. W., Sun, F., Song, L., Carone, B. R., Ricci, E. P., Li, X. Z., Fauquier, L., Moore, M. J., Sullivan, R., Mello, C. C., Garber, M., & Rando, O. J. (2016). Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science (New York, N.Y.), 351(6271), 391–396. https://doi.org/10.1126/science.aad6780 Sharma, U., Sun, F., Conine, C. C., Reichholf, B., Kukreja, S., Herzog, V. A., Ameres, S. L., & Rando, O. J. (2018). Small RNAs Are Trafficked from the Epididymis to Developing Mammalian Sperm. Developmental cell, 46(4), 481–494.e6. https://doi.org/10.1016/j.devcel.2018.06.023 Rinaldi, V. D., Donnard, E., Gellatly, K., Rasmussen, M., Kucukural, A., Yukselen, O., Garber, M., Sharma, U., & Rando, O. J. (2020). An atlas of cell types in the mouse epididymis and vas deferens. eLife, 9, e55474. https://doi.org/10.7554/eLife.55474   Related Episodes The Epigenetics of Human Sperm Cells (Sarah Kimmins) Transgenerational Inheritance and Evolution of Epimutations (Peter Sarkies) The Role of Small RNAs in Transgenerational Inheritance in C. elegans (Oded Rechavi)   Contact Epigenetics Podcast on X Epigenetics Podcast on Instagram Epigenetics Podcast on Mastodon Epigenetics Podcast on Bluesky Epigenetics Podcast on Threads Active Motif on X Active Motif on LinkedIn Email: podcast@activemotif.com

Summary

In this episode of the Epigenetics Podcast, we talked with Upasna Sharma from UC Santa Cruz about her work a number of interesting projects on H2A.Z and telomeres, the impact of paternal diet on offspring metabolism, and the role of small RNAs in sperm. In this interview Upasna Sharma discusses her work on the study of the paternal diet's impact on offspring metabolism. She reveals the discovery of small non-coding RNAs, particularly tRNA fragments, in mature mammalian sperm that may carry epigenetic information to the next generation. She explains the specific alterations in tRNA fragment levels in response to a low-protein diet and the connections found between tRNA fragments and metabolic status. Dr. Sharma further explains the degradation and stabilization of tRNA fragments in cells and the processes involved in their regulation. She shares their observation of tRNA fragment abundance in epididymal sperm, despite the sperm being transcriptionally silent at that time. This leads to a discussion on the role of the epididymis in the reprogramming of small RNA profiles and the transportation of tRNA fragments through extracellular vesicles. The conversation then shifts towards the potential mechanism of how environmental information could be transmitted to sperm and the observed changes in small RNAs in response to a low-protein diet. Dr. Sharma discusses the manipulation of small RNAs in embryos and mouse embryonic stem cells, revealing their role in regulating specific sets of genes during early development. However, the exact mechanisms that link these early changes to metabolic phenotypes are still being explored. References Sharma, U., Conine, C. C., Shea, J. M., Boskovic, A., Derr, A. G., Bing, X. Y., Belleannee, C., Kucukural, A., Serra, R. W., Sun, F., Song, L., Carone, B. R., Ricci, E. P., Li, X. Z., Fauquier, L., Moore, M. J., Sullivan, R., Mello, C. C., Garber, M., & Rando, O. J. (2016). Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science (New York, N.Y.), 351(6271), 391–396. https://doi.org/10.1126/science.aad6780 Sharma, U., Sun, F., Conine, C. C., Reichholf, B., Kukreja, S., Herzog, V. A., Ameres, S. L., & Rando, O. J. (2018). Small RNAs Are Trafficked from the Epididymis to Developing Mammalian Sperm. Developmental cell, 46(4), 481–494.e6. https://doi.org/10.1016/j.devcel.2018.06.023 Rinaldi, V. D., Donnard, E., Gellatly, K., Rasmussen, M., Kucukural, A., Yukselen, O., Garber, M., Sharma, U., & Rando, O. J. (2020). An atlas of cell types in the mouse epididymis and vas deferens. eLife, 9, e55474. https://doi.org/10.7554/eLife.55474   Related Episodes The Epigenetics of Human Sperm Cells (Sarah Kimmins) Transgenerational Inheritance and Evolution of Epimutations (Peter Sarkies) The Role of Small RNAs in Transgenerational Inheritance in C. elegans (Oded Rechavi)   Contact Epigenetics Podcast on X Epigenetics Podcast on Instagram Epigenetics Podcast on Mastodon Epigenetics Podcast on Bluesky Epigenetics Podcast on Threads Active Motif on X Active Motif on LinkedIn Email: podcast@activemotif.com

Subtitle
In this episode of the Epigenetics Podcast, we talked with Upasna Sharma from UC Santa Cruz about her work a number of interesting projects on H2A.Z and telomeres, the impact of paternal diet on offspring metabolism, and the role of small RNAs in spe...
Duration
36:38
Publishing date
2024-03-21 00:01
Link
https://activemotif.podbean.com/e/the-impact-of-paternal-diet-on-offspring-metabolism-upasna-sharma/
Contributors
  Active Motif
author  
Enclosures
https://mcdn.podbean.com/mf/web/tswum8/AMP121_-_Upasna_Sharma949x1.mp3
audio/mpeg

Shownotes

In this episode of the Epigenetics Podcast, we talked with Upasna Sharma from UC Santa Cruz about her work a number of interesting projects on H2A.Z and telomeres, the impact of paternal diet on offspring metabolism, and the role of small RNAs in sperm.

In this interview Upasna Sharma discusses her work on the study of the paternal diet's impact on offspring metabolism. She reveals the discovery of small non-coding RNAs, particularly tRNA fragments, in mature mammalian sperm that may carry epigenetic information to the next generation. She explains the specific alterations in tRNA fragment levels in response to a low-protein diet and the connections found between tRNA fragments and metabolic status.

Dr. Sharma further explains the degradation and stabilization of tRNA fragments in cells and the processes involved in their regulation. She shares their observation of tRNA fragment abundance in epididymal sperm, despite the sperm being transcriptionally silent at that time. This leads to a discussion on the role of the epididymis in the reprogramming of small RNA profiles and the transportation of tRNA fragments through extracellular vesicles.

The conversation then shifts towards the potential mechanism of how environmental information could be transmitted to sperm and the observed changes in small RNAs in response to a low-protein diet. Dr. Sharma discusses the manipulation of small RNAs in embryos and mouse embryonic stem cells, revealing their role in regulating specific sets of genes during early development. However, the exact mechanisms that link these early changes to metabolic phenotypes are still being explored.

References
  • Sharma, U., Conine, C. C., Shea, J. M., Boskovic, A., Derr, A. G., Bing, X. Y., Belleannee, C., Kucukural, A., Serra, R. W., Sun, F., Song, L., Carone, B. R., Ricci, E. P., Li, X. Z., Fauquier, L., Moore, M. J., Sullivan, R., Mello, C. C., Garber, M., & Rando, O. J. (2016). Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science (New York, N.Y.), 351(6271), 391–396. https://doi.org/10.1126/science.aad6780

  • Sharma, U., Sun, F., Conine, C. C., Reichholf, B., Kukreja, S., Herzog, V. A., Ameres, S. L., & Rando, O. J. (2018). Small RNAs Are Trafficked from the Epididymis to Developing Mammalian Sperm. Developmental cell, 46(4), 481–494.e6. https://doi.org/10.1016/j.devcel.2018.06.023

  • Rinaldi, V. D., Donnard, E., Gellatly, K., Rasmussen, M., Kucukural, A., Yukselen, O., Garber, M., Sharma, U., & Rando, O. J. (2020). An atlas of cell types in the mouse epididymis and vas deferens. eLife, 9, e55474. https://doi.org/10.7554/eLife.55474

 

Related Episodes

 

Contact