In this episode of the Epigenetics Podcast, we talked with Yadira Soto-Feliciano from MIT about her work on the Menin-MLL complex and the effect of small molecules on its stability in leukemia. We explore the pivotal moments that led her to cancer biology during her graduate studies, where her work included ground-breaking research on the role of the plant homeodomain Finger protein-6 (PHF-6) in leukemia. This work bridged the realms of chromatin accessibility, transcription factors, and cancer cell lineage, providing critical evidence for the concept of lineage plasticity in cancer biology—a topic that has gained significant traction in recent years. Dr. Soto-Feliciano discusses how advances in techniques like CRISPR and ChIP-sequencing have shaped her research, enabling deeper insights into the mechanisms underlying cancer cell identity. As our discussion transitions, Dr. Soto-Feliciano shares her experience in David Allis's lab, illustrating how the collaboration across diverse scientific disciplines enhanced her understanding of chromatin biology and generated significant insights into the mechanics of epigenetic regulation. Highlighting a recent 2023 publication, we unpack her findings related to the conserved molecular switch between MLL1 and MLL3 complexes. These discoveries revealed how the application of small-molecule inhibitors of the menin-MLL interaction can alter gene expression and affect leukemia cells’ responses to treatments. We also touch on the operational dynamics within her lab at MIT, established during challenging times marked by the pandemic. Yadira is dedicated to fostering a collaborative and respectful environment among her team, comprised of PhD candidates and research technicians, all sharing a commitment to unraveling the complexities of chromatin regulation. She emphasizes the significance of understanding chromatin scaffold proteins and their role in regulating gene expression and genome organization.  References Soto-Feliciano, Y. M., Bartlebaugh, J. M. E., Liu, Y., Sánchez-Rivera, F. J., Bhutkar, A., Weintraub, A. S., Buenrostro, J. D., Cheng, C. S., Regev, A., Jacks, T. E., Young, R. A., & Hemann, M. T. (2017). PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes & development, 31(10), 973–989. https://doi.org/10.1101/gad.295857.117 Soto-Feliciano, Y. M., Sánchez-Rivera, F. J., Perner, F., Barrows, D. W., Kastenhuber, E. R., Ho, Y. J., Carroll, T., Xiong, Y., Anand, D., Soshnev, A. A., Gates, L., Beytagh, M. C., Cheon, D., Gu, S., Liu, X. S., Krivtsov, A. V., Meneses, M., de Stanchina, E., Stone, R. M., Armstrong, S. A., … Allis, C. D. (2023). A Molecular Switch between Mammalian MLL Complexes Dictates Response to Menin-MLL Inhibition. Cancer discovery, 13(1), 146–169. https://doi.org/10.1158/2159-8290.CD-22-0416 Zhu, C., Soto-Feliciano, Y. M., Morris, J. P., Huang, C. H., Koche, R. P., Ho, Y. J., Banito, A., Chen, C. W., Shroff, A., Tian, S., Livshits, G., Chen, C. C., Fennell, M., Armstrong, S. A., Allis, C. D., Tschaharganeh, D. F., & Lowe, S. W. (2023). MLL3 regulates the CDKN2A tumor suppressor locus in liver cancer. eLife, 12, e80854. https://doi.org/10.7554/eLife.80854  Related Episodes MLL Proteins in Mixed-Lineage Leukemia (Yali Dou) Targeting COMPASS to Cure Childhood Leukemia (Ali Shilatifard)  Contact Epigenetics Podcast on Instagram Epigenetics Podcast on Mastodon Epigenetics Podcast on Bluesky Dr. Stefan Dillinger on LinkedIn Active Motif on LinkedIn Active Motif on Bluesky Email: podcast@activemotif.com
In this episode of the Epigenetics Podcast, we talked with Yadira Soto-Feliciano from MIT about her work on the Menin-MLL complex and the effect of small molecules on its stability in leukemia. We explore the pivotal moments that led her to cancer biology during her graduate studies, where her work included ground-breaking research on the role of the plant homeodomain Finger protein-6 (PHF-6) in leukemia. This work bridged the realms of chromatin accessibility, transcription factors, and cancer cell lineage, providing critical evidence for the concept of lineage plasticity in cancer biology—a topic that has gained significant traction in recent years. Dr. Soto-Feliciano discusses how advances in techniques like CRISPR and ChIP-sequencing have shaped her research, enabling deeper insights into the mechanisms underlying cancer cell identity. As our discussion transitions, Dr. Soto-Feliciano shares her experience in David Allis's lab, illustrating how the collaboration across diverse scientific disciplines enhanced her understanding of chromatin biology and generated significant insights into the mechanics of epigenetic regulation. Highlighting a recent 2023 publication, we unpack her findings related to the conserved molecular switch between MLL1 and MLL3 complexes. These discoveries revealed how the application of small-molecule inhibitors of the menin-MLL interaction can alter gene expression and affect leukemia cells’ responses to treatments. We also touch on the operational dynamics within her lab at MIT, established during challenging times marked by the pandemic. Yadira is dedicated to fostering a collaborative and respectful environment among her team, comprised of PhD candidates and research technicians, all sharing a commitment to unraveling the complexities of chromatin regulation. She emphasizes the significance of understanding chromatin scaffold proteins and their role in regulating gene expression and genome organization.  References Soto-Feliciano, Y. M., Bartlebaugh, J. M. E., Liu, Y., Sánchez-Rivera, F. J., Bhutkar, A., Weintraub, A. S., Buenrostro, J. D., Cheng, C. S., Regev, A., Jacks, T. E., Young, R. A., & Hemann, M. T. (2017). PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes & development, 31(10), 973–989. https://doi.org/10.1101/gad.295857.117 Soto-Feliciano, Y. M., Sánchez-Rivera, F. J., Perner, F., Barrows, D. W., Kastenhuber, E. R., Ho, Y. J., Carroll, T., Xiong, Y., Anand, D., Soshnev, A. A., Gates, L., Beytagh, M. C., Cheon, D., Gu, S., Liu, X. S., Krivtsov, A. V., Meneses, M., de Stanchina, E., Stone, R. M., Armstrong, S. A., … Allis, C. D. (2023). A Molecular Switch between Mammalian MLL Complexes Dictates Response to Menin-MLL Inhibition. Cancer discovery, 13(1), 146–169. https://doi.org/10.1158/2159-8290.CD-22-0416 Zhu, C., Soto-Feliciano, Y. M., Morris, J. P., Huang, C. H., Koche, R. P., Ho, Y. J., Banito, A., Chen, C. W., Shroff, A., Tian, S., Livshits, G., Chen, C. C., Fennell, M., Armstrong, S. A., Allis, C. D., Tschaharganeh, D. F., & Lowe, S. W. (2023). MLL3 regulates the CDKN2A tumor suppressor locus in liver cancer. eLife, 12, e80854. https://doi.org/10.7554/eLife.80854  Related Episodes MLL Proteins in Mixed-Lineage Leukemia (Yali Dou) Targeting COMPASS to Cure Childhood Leukemia (Ali Shilatifard)  Contact Epigenetics Podcast on Instagram Epigenetics Podcast on Mastodon Epigenetics Podcast on Bluesky Dr. Stefan Dillinger on LinkedIn Active Motif on LinkedIn Active Motif on Bluesky Email: podcast@activemotif.com
In this episode of the Epigenetics Podcast, we talked with Yadira Soto-Feliciano from MIT about her work on the Menin-MLL complex and the effect of small molecules on its stability in leukemia.
We explore the pivotal moments that led her to cancer biology during her graduate studies, where her work included ground-breaking research on the role of the plant homeodomain Finger protein-6 (PHF-6) in leukemia. This work bridged the realms of chromatin accessibility, transcription factors, and cancer cell lineage, providing critical evidence for the concept of lineage plasticity in cancer biology—a topic that has gained significant traction in recent years. Dr. Soto-Feliciano discusses how advances in techniques like CRISPR and ChIP-sequencing have shaped her research, enabling deeper insights into the mechanisms underlying cancer cell identity.
As our discussion transitions, Dr. Soto-Feliciano shares her experience in David Allis's lab, illustrating how the collaboration across diverse scientific disciplines enhanced her understanding of chromatin biology and generated significant insights into the mechanics of epigenetic regulation. Highlighting a recent 2023 publication, we unpack her findings related to the conserved molecular switch between MLL1 and MLL3 complexes. These discoveries revealed how the application of small-molecule inhibitors of the menin-MLL interaction can alter gene expression and affect leukemia cells’ responses to treatments.
We also touch on the operational dynamics within her lab at MIT, established during challenging times marked by the pandemic. Yadira is dedicated to fostering a collaborative and respectful environment among her team, comprised of PhD candidates and research technicians, all sharing a commitment to unraveling the complexities of chromatin regulation. She emphasizes the significance of understanding chromatin scaffold proteins and their role in regulating gene expression and genome organization.
Â
ReferencesSoto-Feliciano, Y. M., Bartlebaugh, J. M. E., Liu, Y., Sánchez-Rivera, F. J., Bhutkar, A., Weintraub, A. S., Buenrostro, J. D., Cheng, C. S., Regev, A., Jacks, T. E., Young, R. A., & Hemann, M. T. (2017). PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes & development, 31(10), 973–989. https://doi.org/10.1101/gad.295857.117
Soto-Feliciano, Y. M., Sánchez-Rivera, F. J., Perner, F., Barrows, D. W., Kastenhuber, E. R., Ho, Y. J., Carroll, T., Xiong, Y., Anand, D., Soshnev, A. A., Gates, L., Beytagh, M. C., Cheon, D., Gu, S., Liu, X. S., Krivtsov, A. V., Meneses, M., de Stanchina, E., Stone, R. M., Armstrong, S. A., … Allis, C. D. (2023). A Molecular Switch between Mammalian MLL Complexes Dictates Response to Menin-MLL Inhibition. Cancer discovery, 13(1), 146–169. https://doi.org/10.1158/2159-8290.CD-22-0416
Zhu, C., Soto-Feliciano, Y. M., Morris, J. P., Huang, C. H., Koche, R. P., Ho, Y. J., Banito, A., Chen, C. W., Shroff, A., Tian, S., Livshits, G., Chen, C. C., Fennell, M., Armstrong, S. A., Allis, C. D., Tschaharganeh, D. F., & Lowe, S. W. (2023). MLL3 regulates the CDKN2A tumor suppressor locus in liver cancer. eLife, 12, e80854. https://doi.org/10.7554/eLife.80854
Â
Related EpisodesÂ
Contact