Active Motif's Podcast   /     Polycomb Proteins, Gene Regulation, and Genome Organization in Drosophila (Giacomo Cavalli)

Description

In this episode of the Epigenetics Podcast, we talked with Giacomo Cavalli from the Institute of Human Genetics in Montpellier about his work on critical aspects of epigenetic regulation, particularly the role of Polycomb proteins and chromatin architecture. We start the Interview by talking about Dr. Cavalli's work on Polycomb function in maintaining chromatin states and how it relates to gene regulation. He shares insights from his early lab experiences, where he aimed to understand the inheritance mechanisms of chromatin states through various models, including the FAB7 cellular memory module. The discussion uncovers how Polycomb proteins can silence gene expression and the complex interplay between different epigenetic factors that govern this process. Dr. Cavalli also addresses how he has investigated the recruitment mechanisms of Polycomb complexes, highlighting the roles of several DNA-binding proteins, including DSP-1 and GAGA factor, in this intricate regulatory landscape. He emphasizes the evolution of our understanding of Polycomb recruitment, illustrating the multifactorial nature of this biological puzzle. As the conversation progresses, we explore Dr. Cavalli's fascinating research into the three-dimensional organization of the genome. He explains his contributions to mapping chromosomal interactions within Drosophila and the distinctions observed when performing similar studies in mammalian systems. Key findings regarding topologically associated domains (TADs) and their association with gene expression are presented, alongside the implications for our understanding of gene regulation in development and disease.   References Déjardin, J., Rappailles, A., Cuvier, O., Grimaud, C., Decoville, M., Locker, D., & Cavalli, G. (2005). Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature, 434(7032), 533–538. https://doi.org/10.1038/nature03386 Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., & Cavalli, G. (2012). Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148(3), 458–472. https://doi.org/10.1016/j.cell.2012.01.010 Bonev, B., Mendelson Cohen, N., Szabo, Q., Fritsch, L., Papadopoulos, G. L., Lubling, Y., Xu, X., Lv, X., Hugnot, J. P., Tanay, A., & Cavalli, G. (2017). Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell, 171(3), 557–572.e24. https://doi.org/10.1016/j.cell.2017.09.043 Szabo, Q., Donjon, A., Jerković, I., Papadopoulos, G. L., Cheutin, T., Bonev, B., Nora, E. P., Bruneau, B. G., Bantignies, F., & Cavalli, G. (2020). Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nature genetics, 52(11), 1151–1157. https://doi.org/10.1038/s41588-020-00716-8   Related Episodes BET Proteins and Their Role in Chromosome Folding and Compartmentalization (Kyle Eagen) Long-Range Transcriptional Control by 3D Chromosome Structure (Luca Giorgetti) Epigenetic Landscapes During Cancer (Luciano Di Croce)   Contact Epigenetics Podcast on Mastodon Epigenetics Podcast on Bluesky Dr. Stefan Dillinger on LinkedIn Active Motif on LinkedIn Active Motif on Bluesky Email: podcast@activemotif.com

Summary

In this episode of the Epigenetics Podcast, we talked with Giacomo Cavalli from the Institute of Human Genetics in Montpellier about his work on critical aspects of epigenetic regulation, particularly the role of Polycomb proteins and chromatin architecture. We start the Interview by talking about Dr. Cavalli's work on Polycomb function in maintaining chromatin states and how it relates to gene regulation. He shares insights from his early lab experiences, where he aimed to understand the inheritance mechanisms of chromatin states through various models, including the FAB7 cellular memory module. The discussion uncovers how Polycomb proteins can silence gene expression and the complex interplay between different epigenetic factors that govern this process. Dr. Cavalli also addresses how he has investigated the recruitment mechanisms of Polycomb complexes, highlighting the roles of several DNA-binding proteins, including DSP-1 and GAGA factor, in this intricate regulatory landscape. He emphasizes the evolution of our understanding of Polycomb recruitment, illustrating the multifactorial nature of this biological puzzle. As the conversation progresses, we explore Dr. Cavalli's fascinating research into the three-dimensional organization of the genome. He explains his contributions to mapping chromosomal interactions within Drosophila and the distinctions observed when performing similar studies in mammalian systems. Key findings regarding topologically associated domains (TADs) and their association with gene expression are presented, alongside the implications for our understanding of gene regulation in development and disease.   References Déjardin, J., Rappailles, A., Cuvier, O., Grimaud, C., Decoville, M., Locker, D., & Cavalli, G. (2005). Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature, 434(7032), 533–538. https://doi.org/10.1038/nature03386 Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., & Cavalli, G. (2012). Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148(3), 458–472. https://doi.org/10.1016/j.cell.2012.01.010 Bonev, B., Mendelson Cohen, N., Szabo, Q., Fritsch, L., Papadopoulos, G. L., Lubling, Y., Xu, X., Lv, X., Hugnot, J. P., Tanay, A., & Cavalli, G. (2017). Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell, 171(3), 557–572.e24. https://doi.org/10.1016/j.cell.2017.09.043 Szabo, Q., Donjon, A., Jerković, I., Papadopoulos, G. L., Cheutin, T., Bonev, B., Nora, E. P., Bruneau, B. G., Bantignies, F., & Cavalli, G. (2020). Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nature genetics, 52(11), 1151–1157. https://doi.org/10.1038/s41588-020-00716-8   Related Episodes BET Proteins and Their Role in Chromosome Folding and Compartmentalization (Kyle Eagen) Long-Range Transcriptional Control by 3D Chromosome Structure (Luca Giorgetti) Epigenetic Landscapes During Cancer (Luciano Di Croce)   Contact Epigenetics Podcast on Mastodon Epigenetics Podcast on Bluesky Dr. Stefan Dillinger on LinkedIn Active Motif on LinkedIn Active Motif on Bluesky Email: podcast@activemotif.com

Subtitle
Duration
44:19
Publishing date
2025-02-13 00:01
Link
https://activemotif.podbean.com/e/polycomb-proteins-gene-regulation-and-genome-organization-in-drosophila-giacomo-cavalli/
Contributors
  Active Motif
author  
Enclosures
https://mcdn.podbean.com/mf/web/3mbzfh3ceibxktnc/AMP144_-_Giacomo_Cavalli9vrt0.mp3
audio/mpeg

Shownotes

In this episode of the Epigenetics Podcast, we talked with Giacomo Cavalli from the Institute of Human Genetics in Montpellier about his work on critical aspects of epigenetic regulation, particularly the role of Polycomb proteins and chromatin architecture.

We start the Interview by talking about Dr. Cavalli's work on Polycomb function in maintaining chromatin states and how it relates to gene regulation. He shares insights from his early lab experiences, where he aimed to understand the inheritance mechanisms of chromatin states through various models, including the FAB7 cellular memory module. The discussion uncovers how Polycomb proteins can silence gene expression and the complex interplay between different epigenetic factors that govern this process.

Dr. Cavalli also addresses how he has investigated the recruitment mechanisms of Polycomb complexes, highlighting the roles of several DNA-binding proteins, including DSP-1 and GAGA factor, in this intricate regulatory landscape. He emphasizes the evolution of our understanding of Polycomb recruitment, illustrating the multifactorial nature of this biological puzzle.

As the conversation progresses, we explore Dr. Cavalli's fascinating research into the three-dimensional organization of the genome. He explains his contributions to mapping chromosomal interactions within Drosophila and the distinctions observed when performing similar studies in mammalian systems. Key findings regarding topologically associated domains (TADs) and their association with gene expression are presented, alongside the implications for our understanding of gene regulation in development and disease.

 

References
  • Déjardin, J., Rappailles, A., Cuvier, O., Grimaud, C., Decoville, M., Locker, D., & Cavalli, G. (2005). Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature, 434(7032), 533–538. https://doi.org/10.1038/nature03386

  • Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., & Cavalli, G. (2012). Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148(3), 458–472. https://doi.org/10.1016/j.cell.2012.01.010

  • Bonev, B., Mendelson Cohen, N., Szabo, Q., Fritsch, L., Papadopoulos, G. L., Lubling, Y., Xu, X., Lv, X., Hugnot, J. P., Tanay, A., & Cavalli, G. (2017). Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell, 171(3), 557–572.e24. https://doi.org/10.1016/j.cell.2017.09.043

  • Szabo, Q., Donjon, A., Jerković, I., Papadopoulos, G. L., Cheutin, T., Bonev, B., Nora, E. P., Bruneau, B. G., Bantignies, F., & Cavalli, G. (2020). Regulation of single-cell genome organization into TADs and chromatin nanodomains. Nature genetics, 52(11), 1151–1157. https://doi.org/10.1038/s41588-020-00716-8

 

Related Episodes

 

Contact