Graph Neural Networks are very effective in dealing with complex network data structures to perform label and link predictions. They can process typological and structural information from social networks to protein pathways. But can they also work with multi-dimensional and dynamic data models of Semantic Graphs? What information loss does one have to consider when it comes to Machine Learning based on ontologies?
Graph Neural Networks are very effective in dealing with complex network data structures to perform label and link predictions. They can process typological and structural information from social networks to protein pathways. But can they also work with multi-dimensional and dynamic data models of Semantic Graphs? What information loss does one have to consider when it comes to Machine Learning based on ontologies?